Tag: 上海夜网论坛AI

CATEGORIES:

first_imgST JOHN’S, Antigua, CMC – The West Indies Cricket Board yesterday urged top regional players to make themselves available for upcoming domestic tournaments, even as several of them prepared to turn out in Australia’s Big Bash League which runs alongside next month’s NAGICO Super50.Chief executive Michael Muirhead said the Super50 – the region’s premier one-day tournament – had been scheduled during a period to allow for maximum participation for the Caribbean’s leading players, and said their presence would be a fillip especially for West Indian fans.”There is an opportunity to have the best players compete for regional supremacy in the upcoming events,” Muirhead said.”The Board has looked at its tournament schedule and has placed each tournament at a time that allows our international players to participate in other competitions overseas.”We, however, value our competitions and we think the fans would want to see our best players compete against each other.”The Super50 bowls off from January 7-24 in Trinidad and Tobago and St Kitts, and features eight teams spread across two groups doing battle in a preliminary phase before climaxing with semi-finals and a grand Final.However, the Big Bash which started on Thursday, runs through to the New Year and is set to also wind up on January 24.Several West Indies players will be campaigning in the Big Bash with the likes of marquee opener Chris Gayle, Andre Russell, Darren Sammy, Dwayne Bravo, Samuel Badree and Lendl Simmons all signed to various franchises.Players who fail to make themselves available for the Super50, will be ineligible for the Tri-Nations Series involving Australia and South Africa from June 6-26.Muirhead said with the packed schedule ahead next year, all players would also have the opportunity to develop further.”In the upcoming year, there are a number of tours in and out of the region and with that amount of cricket added, along with the phased roll out of the high performance program, the players will have a chance at better preparing themselves for producing at the highest level.”Following the Super50, the Regional First Class Championship will resume with the remaining five rounds on February 11.last_img read more

Read More
CATEGORIES:

first_imgAn ‘old rocker’ gave something back to some ‘young rockers’ when Cllr Dessie Larkin donated €2,000 of his personal political fund to the BEO project.BEO is the brainchild of pupils and teachers at a number of Letterkenny school spearheaded by Colaiste Ailigh.The project encourages students to organise, promote and stage their own rock concerts and battle of the bands contests. After this year’s inaugural concert, BEO will again host the concert on March 15th.Mayor of Letterkenny, Cllr Larkin, said he was delighted to donate the money for such a worthwhile project.To mark the occasion, BEO held a gig in The Green Room at Voodoo which was headlined by rockers Mojo GoGo, Jamaican Vampires and Insanity.  IT’S OFFICIAL – DESSIE LARKIN ROCKS! was last modified: December 21st, 2012 by StephenShare this:Click to share on Facebook (Opens in new window)Click to share on Twitter (Opens in new window)Click to share on LinkedIn (Opens in new window)Click to share on Reddit (Opens in new window)Click to share on Pocket (Opens in new window)Click to share on Telegram (Opens in new window)Click to share on WhatsApp (Opens in new window)Click to share on Skype (Opens in new window)Click to print (Opens in new window) Tags:BeoCllr Dessie Larkinlast_img read more

Read More
CATEGORIES:

first_imgScientists have spotted swirling patterns in the radiation lingering from the big bang, the so-called cosmic microwave background (CMB). The observation itself isn’t Earth-shaking, as researchers know that these particular swirls or “B-modes” originated in conventional astrophysics, but the result suggests that scientists are closing in on a much bigger prize: B-modes spawned by gravity waves that rippled through the infant universe. That observation would give them a direct peek into the cosmos’ first fraction of a second and possibly shed light on how it all began.”I see it as a big step forward,” says Charles Bennett, a cosmologist at Johns Hopkins University in Baltimore, Maryland, who was not involved in the work. “I take it as a hopeful sign that we can get to the gravitational-wave signal.”Since it was discovered in 1965, the CMB has proved a font of information for cosmologists. In 1992, NASA Cosmic Background Explorer (COBE) probe measured the spectrum of the radiation, which has cooled as the universe expanded, and found that it had the characteristics that one would expect if the universe had been born in a single burst. COBE also detected part-in-100,000 variations in the temperature of the CMB across the sky, which would reveal much about the cosmos.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)By 2003, NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) and other experiments had studied those variations statistically and found that they fit a model in which the universe consists of 5% ordinary matter, 24% mysterious dark matter whose gravity binds the galaxies, and 71% bizarre space-stretching dark energy. That standard cosmological model was strongly confirmed earlier this year by the European Space Agency’s (ESA’s) Planck space probe.But the CMB may have more information in store. According to the standard cosmology, the temperature variations reflect tiny quantum fluctuations in the newborn universe. These fluctuations were blown up to immense size in the first fraction of a second when the universe doubled and redoubled its size 60 times over in a faster-than-light growth spurt known as inflation. Drawn by gravity, dark and ordinary matter then settled into the fluctuations, seeding galaxies. Inflation may also have left its imprint on the CMB.The microwaves in the CMB can be polarized like light reflected from the surface of a lake. In a patch of sky, the random polarization pattern can be separated into two superimposed components: B-modes, in which the polarization forms right- or left-handed swirls, and E-modes, in which it does not. Whereas the coalescing of matter in the early universe can produce only E-modes, gravity waves rippling along during inflation should produce B-modes. The intensity of those “primordial” B-modes should reveal the energy density of the universe during inflation and help explain how it happened.But first scientists must detect B-modes of any kind. That’s what the team with the South Pole Telescope (SPT), a 10-meter dish in Antarctica, has done. B-modes can come from “foreground” radiation from within our galaxy, or when the gravity from the vast web of matter that fills the universe distorts the image of E-modes in the CMB. That distortion is called gravitation lensing, and SPT has observed lensing-induced B-modes, says Duncan Hanson, an astrophysicist at McGill University in Montreal, Canada, and lead author on the paper describing the work, which was posted on 22 July to the arXiv preprint server.Hanson and colleagues began with an external input, a measurement of cosmic infrared radiation from ESA’s Herschel space telescope to estimate the distribution of mass in the universe. They then calculated its effect on SPT’s own map of the E-modes in a particular patch of sky to predict the lensing-induced B-modes on scales stretching less than a degree. Using this template, they were able tease out B-modes in the data itself. That signal is only 1/100th as strong as the temperature variations. It should be possible to spot the lensing B-modes using only the CMB data, Hanson says, but “we were trying to be very conservative for this first detection, so we chose the analysis with the least sensitivity to instrumental effects.”The observation itself could be very useful, says David Spergel, a cosmologist at Princeton University. Lensing of the images of far-flung galaxies or of the temperature variations in the CMB already provides a probe of distribution of matter in the universe. But lensing of the polarization of CMB should be an even cleaner probe of that distribution, he says.The result also suggests that scientists may be closing in on B-modes from gravity waves, too. One way to do that would be to subtract the lensing-induced signal to see if there is any signal left over. A more promising tack may be to look for swirls on larger scales, on which the lensing signal should be weaker, Spergel says. A half-dozen ground- and balloon-based experiments are racing to do that, and the new result suggests that they may beat Planck to that goal. “I know from talking to people on the Planck team that they’re pushing very hard on this,” Spergel says. “They hear footsteps.”Planck isn’t designed to hunt for B-modes so it may be a long shot to make that discovery anyway, Bennett says. Moreover, he notes, theory does not predict how strong the primordial B-modes should be: “We really don’t know how small the inflationary signal is, so we may not be able to get there from here.” Still, Bennett says, the signal could be far stronger than expected—in which case it could show up in a few months when Planck releases more data.last_img read more

Read More